

REPORT OF PERFORMANCE

1088-15

OBJECT

Three-core heat-shrinkable outdoor termination

TYPE

GTM-OXAS-1233H6A (GXO-13)

6,35/11 (12) kV - 3x185 mm² - AI - XLPE

CLIENT

Gala Shrink Fit Mumbai, India

MANUFACTURER

Gala Shrink Fi Mumbai, India

TESTED BY

KEMA Nederland B.V. Arnhem, The Netherlands

DATE OF TESTS

12 August 2014 to 23 March 2015

TEST SPECIFICATION

The programme was based on

IEC 60502-4 (2010), test sequence 1.1, 1.2, and 1.5.

SUMMARY AND CONCLUSION

The outdoor termination passed the electrical and non- electrical tests. During the examination of the outdoor terminations after the salt fog test

loss of dielectric quality due to tracking and/or erosion was found.

This report applies only to the object tested. The responsibility for conformity of any object having the same type references as that tested rests with the manufacturer.

This report consists of 70 pages in total.

Copyright: Only integral reproduction of this report is permitted without written permission from KEMA. Electronic copies in e.g. PDF-format or scanned version of this report may be available and have the status "for information only". The sealed and bound version of the report is the only valid version.

KEMA Nederland BA

S.A.M. Verhoeven

Director Testing, Inspections & Certification The Netherlands

Arnhem, 7 May 2015

CONTE	NTS	page
1	Identification of the object tested	4
1.1	Ratings/characteristics of the object tested and proved by tests	4
1.2	Characteristics of the outdoor termination for cables with extruded insulation	4
1.3	Characteristics of the test cable	4
1.4	List of drawings	7
2	General information	8
2.1	The tests were witnessed by	8
2.2	The tests were carried out by	8
2.3	Measurement uncertainty	8
3	Test sequence 1.1 for outdoor termination (two terminations)	9
3.1	Determination of the cable conductor temperature	9
3.1.1	Determination of the cable conductor temperature	9
3.2	Photograph of test set-up	10
3.3	DC voltage dry	11
3.4	AC voltage dry	12
3.5	AC voltage wet	13
3.6	Partial discharge at ambient temperature	14
3.7	Impulse voltage at elevated temperature	15
3.8	Heating cycle voltage in air	23
3.9	Immersion	24
3.10	Partial discharge at elevated and ambient temperature	25
3.10.1	Partial discharge at elevated temperature	25
3.10.2	Partial discharge at ambient temperature	26
3.11	Impulse voltage at ambient temperature	27
3.12	AC voltage dry	35
3.13	Examination	36
3.13.1	Photographs	37
4	Test sequence 1.2 for outdoor termination (one termination)	39
4.1	Test arrangement	39
4.1.1	Determination of the cable conductor temperature	39
4.2	DC voltage dry	40
4.3	AC voltage dry	41
4.4	Thermal short circuit test (screen)	42
4.5	Thermal short circuit test (conductor)	45
4.6	Test circuit S01	46
4.7	Test results and oscillograms	4
4.8	Condition / inspection after test	49
4.9	Impulse voltage at ambient temperature	52
4.10	AC voltage dry	60
4.10	Examination	6
4.44.4	Photographs	6

5	Test sequence 1.5 (one outdoor termination)	64
5.1	Salt fog	
•	Drawing	69
6	Diawing	70
7	Measurement uncertainty	70

1088-15

1 IDENTIFICATION OF THE OBJECT TESTED

1.1 Ratings/characteristics of the object tested and proved by tests

Rated voltage, U_0/U (U_m) 6,35/11 (12) kV
Rated maximum conductor temperature in normal operation 90 °C
Rated conductor cross-section 3x185 mm²
Thermal short-circuit current 22,5 kA

1.2 Characteristics of the outdoor termination for cables with extruded insulation

Manufacturer Gala Shrink Fit, Mumbai, India

Type heat-shrinkable outdoor termination
Type designation, reference number GTM-OXAS-1233H6A (GXO-13)

Year of manufacture 2014

Rated voltage, U₀/U (U_m) 6,35/11 (12) kV

No. of cores

Dynamic short-circuit current not applicable

Creepage distance (minimum) 750 mm, including sheds

Flashover distance (minimum) - 20 mm

Number of sheds 2

Material of insulating body heat-shrinkable cross linked polyolefin anti-tracking

material

Type of stress control stress control mastic

1.3 Characteristics of the test cable

Note: the cable is not part of the type test.

Manufacturer (as stated by the client) Apar Industries Limited,

India

Type $U_0 = 6 \text{ kV } 3x185 \text{ mm}^2 \text{ Al/XLPE/CTS/PVC/SWA/PVC}$

(A2XCEWY) CABLE

Manufacturing year 2014

Rated voltage, U₀/U (U_m) 6/10 (12) kV

No. of cores

Core identification core 1 = red

core 2 = yellow

core 3 = blue

Marking on the oversheath AIL/UNIT: UNIFLEX CABLES- INDIA 'UNICAB'

6/10 (12) KV XLPE CABLE '3X185 Sq.mm 2014

Construction see List of drawings

Conductor

materialcross-section

nominal diameter

type

 maximum conductor temperature in normal operation

 presence and nature of measures to achieve longitudinal watertightness aluminium 185 mm²

-5-

16,2 mm

stranded circular compacted

90 °C

no

Conductor screen

material

nominal thickness

material designation

manufacturer of the material

extruded semi-conducting compound

0,6 mm

extruded semi-conducting compound

Hanwha and Sakun Polymer

Insulation

- material

nominal thickness

XLPE

3,4 mm

Insulation (core) screen

material

strippable

- nominal thickness

extruded semi-conducting compound

yes

0,5 mm

Metal screen

material

type

nominal thickness and width of tape

nominal thickness and width of tape

cross-sectional area

two annealed plain copper tape

helical

0,03 x 40 mm (overlap 10%)

2 x 40 mm (overlap 10%)

27,6 mm² three cores together

Inner coverings and fillers

- material

yes

Separation sheath

material

nominal thickness

- manufacturer of the material

PVC, type ST₂

1,6 mm

Gala Shrink Fit, Mumbai, India

Metal armour

material

- number of wires

- nominal diameter of wires

- cross-sectional area

galvanised steel round wires

68

2,5 mm

333,8 mm²

Metal foil or tape, longitudinally applied, bonded to the oversheath

Oversheath

PVC, type ST₂ material 3,3 mm nominal thickness

72,0 mm nominal overall diameter of the cable

PVC, type ST2 material designation

Gala Shrink Fit, Mumbai, India manufacturer of the material

-6-

black colour

Manufacturing details insulation system

Umbergaon, India location of manufacturing

CCV type of extrusion line

triple common extrusion type of extrusion

dry curing means dry cooling means 100 m

manufacturing length (where cable

sample for testing has been taken from)

1.4 List of drawings

The manufacturer has guaranteed that the object submitted for tests has been manufactured in accordance with the following drawing and documents. KEMA has verified that these drawing and documents adequately represent the object tested. The manufacturer is responsible for the correctness of these drawing and documents and the technical data presented.

The following drawing and documents have been included in this Report:
Drawing No./document No.

Revision
GTSPL/K01/06/14

00

The following document is only listed for reference and is kept in KEMA's files:

Document no. Revision/date

Components list GTM/OXAS/1233A
Jointing instruction GTM/XAS/31115 -

2 GENERAL INFORMATION

2.1 The tests were witnessed by

Name

Mr Gurubax Singh 12 to 15 August 2014 Company

Gala Shrink Fit, Mumbai, India

2.2 The tests were carried out by

Name

Ms H. He

Mr A. Sengers

Mr T. Ariaans

Mr E. Pultrum

Mr D. Bouchier

Mr N. Dobbe

Mr K. Linden

Company

KEMA Nederland B.V., Arnhem, The Netherlands

2.3 Measurement uncertainty

A table with measurement uncertainties is enclosed in this report. Unless otherwise stated, the measurement uncertainties of the results presented in this report are as indicated in that table.

3 TEST SEQUENCE 1.1 FOR OUTDOOR TERMINATION (TWO TERMINATIONS)

- 3.1 Determination of the cable conductor temperature
- 3.1.1 Determination of the cable conductor temperature

Standard

Standard

IEC 60840, Annex A, Subclause A.3.1 was used as a guide

For the tests at elevated temperature, a reference loop for temperature control of the conductor was installed and conductor current was used for heating. The reference cable was cut from the total cable length intended for the type test. This reference loop was installed close to the main loop in order to create the same environmental conditions as for the test loop.

The heating currents in both the reference loop and the test loop were kept equal at all times, thus the conductor temperature of the reference loop is representative for the conductor temperature of the test loop. IEC 60840, Annex A was used as a guide and IEC 60840, Subclause A.3.1, method 1 was applied.

The tests at elevated temperature are carried out after the conductor temperature has been within the stated temperature limits for at least 2 hours. The test set-up was consisting of a joint as part of a cable system, also incorporating two outdoor terminations which are not part of the type test objects. The test set-up of two separate main test loops connected in series.

Sample 1 and 2 for test sequence 1.1

3.3 DC voltage dry

Standard and date

Standard

IEC 60502-4, Table 5, test number 1

Test date

12 August 2014

Environmental conditions

Ambient temperature

21 °C

Temperature of test object

21 °C

Testing arrangement	Voltage applied, DC		Duration	
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 1	Metal screens	6	38	15
Conductor 1,2 and 3 of test loop 2	Metal screens	6	38	15

Note

On request of the client the test has been performed more severely at 6 x U_0 instead of 4 x U_0 .

Requirement

No breakdown or flashover shall occur.

Result

3.4 AC voltage dry

Standard and date

Standard

IEC 60502-4, Table 5, test number 1

Test date

12 August 2014

Environmental conditions

Ambient temperature

21 °C

Temperature of test object

22 °C

Testing arrangement	Voltage applied, 50 Hz		Duration	
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 1	Metal screens	4,5	28,5	5
Conductor 1,2 and 3 of test loop 2	Metal screens	4,5	28,5	5

Requirement

No breakdown or flashover shall occur.

Result

3.5 AC voltage wet

Standard and date

Standard

IEC 60502-4, Table 5, test number 1

Test date

13 August 2014

Environmental conditions

Ambient temperature

22 °C

Characteristic test data

Temperature of test object

22 °C

Temperature of water

22 °C

Vertical component

1,4 mm/min

Horizontal component

1,9 mm/min

Pre-wetting period

> 15 min

Testing arrangement	Voltage applied, 50 Hz		Duration	
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 1	Metal screens	4	25,5	1
Conductor 1,2 and 3 of test loop 2	Metal screens	4	25,5	1

Requirement

No breakdown or flashover shall occur.

Result

3.6 Partial discharge at ambient temperature

Standard and date

Standard

IEC 60502-4, Table 5, test number 2

Test date

13 August 2014

Environmental conditions

Ambient temperature

22 °C

Characteristic test data

22 °C Temperature of test object Circuit direct Calibration 5 pC Noise level at 1,73 Uo 2.5 pC Declared sensitivity 5 pC Required sensitivity ≤ 5 pC Centre frequency 117,5 kHz Bandwidth (Δf) 100 kHz 50 Hz Test frequency Coupling capacitor 2600 pF

Core	Voltage app	olied, 50 Hz	Duration	Partial discharge level	
	x U ₀	(kV)	(s)	(pC)	
1 of test loop 1	2	12,5	10		
	1,73	11	-	Not detectable .	
2 of test loop 1	2	12,5	10		
	1,73	11		Not detectable	
3 of test loop 1	2	12,5	10		
	1,73	11		Not detectable	
1 of test loop 2	2	12,5	10		
	1,73	11	4	Not detectable	
2 of test loop 2	2	12,5	10		
	1,73	11		Not detectable	
3 of test loop 2	2	12,5	10		
	1,73	11		Not detectable	

Requirement

The maximum partial discharge level from the test object at 1,73 U₀ shall not exceed 10 pC.

Result

3.7 Impulse voltage at elevated temperature

Standard and date

Standard

IEC 60502-4, Table 5, test number 3

Test date

26 August 2014

Environmental conditions

Ambient temperature

21 °C

.Characteristic test data

Temperature of test object

97 °C

Specified test voltage

95 kV

Testing arrangement		Polarity	Voltage applied	No. of impulses	See figure on next pages	
Voltage applied to	Earthed	and town	(% of test voltage)			
Conductor 1	Metal screens	Positive	50	1	1 (waveshape)	
test loop 1 and 2	and conductor		65	1	2	
	2 and 3		80	1	2	
			100	10	3 and 4	
Conductor 1	Metal screens	Negative	50	1	5 (waveshape)	
test loop 1 and 2	and conductor		65	1	6	
	2 and 3		80	1	6	
			100	10	7 and 8	
Conductor 2	Metal screens and conductor 1 and 3	Positive	50	1	9 (waveshape)	
test loop 1 and 2			65	1	10	
			80	1	10	
			100	10	11 and 12	
Conductor 2	Metal screens	Negative	50	1	13(waveshape)	
test loop 1 and 2	and conductor 1 and 3		65	1	14	
			80	1	14	
			100	10	15 and 16	
Conductor 3	Metal screens	Positive	50	1	17 (waveshape)	
test loop 1 and 2	and conductor		65	1	18	
	1 and 2		80	1	18	
Constant			100	10	19 and 20	
Conductor 3	Metal screens	Negative	50	1	21 (waveshape)	
test loop 1 and 2	and conductor		65	1	22	
	1 and 2		80	1	22	
		el High	100	10	23 and 24	

Note

On request of the client the applied LI voltage was 95 kV instead of 75 kV.

6- 1088-15

Requirement

Each core of the cable and accessory shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

3.8 Heating cycle voltage in air

Standard and date

Standard

IEC 60502-4, Table 5, test number 4

Test dates

28 August to 9 October 2014

Environmental conditions

Ambient temperature

20-22 °C

Characteristic test data

Heating method

conductor current

Stabilized temperature

97 °C

No. of	Required	Heating	Heating of	cycle		Voltage	
heating	steady	current_during	Heating	Heating			
cycles	conductor temperature	steady condition	Total duration (h)	Duration of conductor at steady temperature (h)	Total duration (h)	Total duration (h)	Voltage applied 2,5 U ₀ (kV)
126	95-100	approx. 409	5	2	4	9	16

Note

On request of the client the applied number of heating cycles was 126 instead of 60.

Requirement

No breakdown shall occur.

Result

3.9 Immersion

Standard and date

Standard

IEC 60502-4, Table 5, test number 5

Test dates

4 to 8 November 2014

Environmental conditions

Ambient temperature

20-22 °C

.Characteristic test data

Heating method

conductor current

Stabilized temperature

97 °C

Height above every part of the

0,03-0,05 m

termination

No. of	Required	Heating	Heating cycle	THE PERSON	
cycles co	steady current during		Heating	Cooling	
	temperature	steady condition (A)	Total duration (h)	Duration of conductor at steady temperature (h)	Total duration
10	95 - 100	approx. 413	5	2	4

Requirement

The test shall be carried out successfully.

Result

3.10 Partial discharge at elevated and ambient temperature

3.10.1 Partial discharge at elevated temperature

Standard and date

Standard

IEC 60502-4, Table 5, test number 6

Test date

11 November 2014

.Environmental conditions

Ambient temperature

20 °C

.Characteristic test data

Temperature of test object	97 °C
Circuit	direct
Calibration	5 pC
Noise level at 1,73 U ₀	2 pC
Declared sensitivity	4 pC
Required sensitivity	≤ 5 pC
Centre frequency	98 kHz
Bandwidth (∆f)	100 kHz
Test frequency	50 Hz
Coupling capacitor	2600 pF

Core	Voltage applied, 50 Hz		Duration	Partial discharge level	
Marchellina	x U ₀	(kV)	(s)	(pC)	
1 of test loop 1 and 2	2	12,5	10	-	
	1,73	11	-	Not detectable	
2 of test loop 1 and 2	2	12,5	10		
	1,73	11	- -	Not detectable	
3 of test loop 1 and 2	2	12,5	10	_	
River and The second	1,73	11		Not detectable	

Requirement

The maximum partial discharge level from the test object at 1,73 $\,\mathrm{U}_0$ shall not exceed 10 pC.

Result

3.10.2 Partial discharge at ambient temperature

Standard and date

Standard

IEC 60502-4, Table 5, test number 6

Test date

13 November 2014

Environmental conditions

Ambient temperature

20 °C

.Characteristic test data

20 °C
direct
5 pC
2,5 pC
5 pC
≤ 5 pC
124,5 kHz
100 kHz
50 Hz
2600 pF

Core	Voltage applied, 50 Hz		Duration	Partial discharge level
	x U ₀	(kV)	(s)	(pC)
1 of test loop 1 and 2	2	12,5	10	
	1,73	11	-	Not detectable
2 of test loop 1 and 2	2	12,5	10	-
	1,73	11	-	Not detectable
3 of test loop 1 and 2	2	12,5	10	
	1,73	11	1	Not detectable

Requirement

The maximum partial discharge level from the test object at 1,73 U₀ shall not exceed 10 pC.

Result

3.11 Impulse voltage at ambient temperature

Standard and date

Standard

IEC 60502-4, Table 5, test number 10

Test date

14 November 2014

.Environmental conditions

Ambient temperature

20 °C

.Characteristic test data

Temperature of test object

20 °C

Specified test voltage

95 kV

Testing arrangeme	nt	Polarity	Voltage applied	No. of impulses	See figure on next pages
Voltage applied to	Earthed		(% of test voltage)		
Conductor 1 of	Metal screens	Positive	50	1	1 (waveshape)
test loop 1 and 2	and conductor		65	1	2
	2 and 3		80	1	2
	Aprile of the service	A STATE OF THE STA	100	10	3 and 4
Conductor 1 of	Metal screens	Negative	50	1	5 (waveshape)
test loop 1 and 2	and conductor 2 and 3		65	1	6
			80	1	6
			100	10	7 and 8
Conductor 2 of	Metal screens	Positive	50	1	9 (waveshape)
test loop 1 and 2	and conductor 1 and 3		65	1	10
			80	1	10
			100	10	11 and 12
Conductor 2 of	Metal screens and conductor 1 and 3	conductor	50	1	13 (waveshape)
test loop 1 and 2			65	1	14 -
			80	1	14
			100	10	15 and 16
Conductor 3 of	Metal screens	Positive	50	1	17(waveshape)
test loop 1 and 2	and conductor		65	1	18
	1 and 2		80	1	18
	and the same		100	10	19 and 20.
Conductor 3 of	Metal screens	Negative	50	1	21 (waveshape)
test loop 1 and 2	and conductor		65	1	22
	1 and 2		80	1	22
Children to the control of the contr			100	10	23 and 24

Note

On request of the client the applied LI voltage was 95 kV instead of 75 kV.

-28-

Requirement

Each core of the cable and accessory shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

3.12 AC voltage dry

Standard and date

Standard

IEC 60502-4, Table 5, test number 11

Test date

17 November 2014

Environmental conditions

Ambient temperature
Temperature of test object

20 °C

20 °C

Testing arrangement		Voltage ap	plied, 50 Hz	Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 1 and 2	Metal screens	2,5	16	15

Requirement

No breakdown or flashover shall occur.

Result

3.13 Examination

Standard and date

Standard

IS 13573 (part 2), table 2, test xiv)

Test date

1 December 2014

Environmental conditions

Ambient temperature

21 °C

Temperature of test object

21 °C

Test loop	Observations ¹⁾	
1 and 2	None of the following has been detected: - cracking in the filling material and/or tape or tubing components - a moisture path bridging a primary seal - corrosion and/or tracking and/or erosion - leakage of any insulating material	

Result

The results are for information only.

4 TEST SEQUENCE 1.2 FOR OUTDOOR TERMINATION (ONE TERMINATION)

4.1 Test arrangement

4.1.1 Determination of the cable conductor temperature

Standard

Standard

IEC 60840, Annex A, Subclause A.3.1 was used as a guide

For the tests at elevated temperature, a reference loop for temperature control of the conductor was installed and conductor current was used for heating. The reference cable was cut from the total cable length intended for the type test. This reference loop was installed close to the main loop in order to create the same environmental conditions as for the test loop.

The heating currents in both the reference loop and the test loop were kept equal at all times, thus the conductor temperature of the reference loop is representative for the conductor temperature of the test loop. IEC 60840, Annex A was used as a guide and IEC 60840, Subclause A.3.1, method 1 was applied.

The tests at elevated temperature are carried out after the conductor temperature has been within the stated temperature limits for at least 2 hours. The test set-up was consisting of a joint as part of a cable system, also incorporating a heat-shrinkable outdoor termination and a heat-shrinkable indoor termination.

Sample 3 for test sequence 1.2

DC voltage dry 4.2

Standard and date

Standard

IEC 60502-4, Table 5, test number 1

Test date

12 August 2014

Environmental conditions

°C 21 Ambient temperature 22 °C Temperature of test object

Testing arrangement		Voltage ap	plied, DC	Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 3	Metal screens	6	38	15

Note

On request of the client the test has been performed more severely at 6 x U₀ instead of 4 x U₀.

Requirement

No breakdown or flashover shall occur.

AC voltage dry

Standard and date

Standard

IEC 60502-4, Table 5, test number 1

Test date

12 August 2014

Environmental conditions

Ambient temperature

21 °C

Temperature of test object

22 °C

Testing arrangement		Voltage ap	plied, 50 Hz	Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of	Metal screens and	4,5	28,5	5
test loop 3	conductor 2 and 3			

Note

The test was more severe than the requirement; both the DC voltage test and the AC voltage test is conducted.

Requirement

No breakdown or flashover shall occur.

Result

4.4 Thermal short circuit test (screen)

Standard and date

Standard

IEC 60502-4, Table 5, test number 7

Test date

9 January 2015

Environmental conditions

Ambient temperature

22 °C

Characteristic test data

Stabilized conductor temperature

97 °C

Conductor heating			
Required conductor temperature θ (°C)	Applied 3-phase heating current (A)	Conductor stable at 97 °C before short-circuit application (h)	
95 ≤ θ ≤ 100	530	2	

Short-circuit application	on on screen (see	figures on the next pa	ages)
Specified short-circuit current	Frequency	Duration	Number of short- circuit applications
(kA)	(Hz)	(s)	
2,5	50	1	2

Procedure

The conductor temperature shall be maintained within the stated temperature limits for at least 2 h before carrying out the short-circuit test. Between the two short-circuit applications, the cable screen shall be allowed to cool down to a temperature less than 10 K above its temperature prior to the first short-circuit application.

Requirement

No visible deterioration may occur.

Result

Thermal short circuit test (conductor) 4.5

Standard and date

Standard

IEC 60502-4, Table 5, test number 8

Test date

28 January 2015

Environmental conditions

Ambient temperature

11 °C

Characteristic test data

Conductor material		Aluminum
Cross section conductor	185	mm²
Maximum short circuit conductor	250	°C
temperature		

First short circuit application

Start temperature of test object	13,5	°C	
(measured value) Selected duration of short circuit	1	s	
current Calculated short circuit current	22,5	kA	
Thermal current, three phase	22,7	kA	
Duration	1,06	s	

Second short circuit application

Start temperature of test object	13,5	°C
(measured value) Selected duration of short circuit	1	s
current Calculated short circuit current	22,5	kA
Thermal current, three phase	22,7	kA
Duration	1,05	s

Procedure

Two short-circuits shall be applied to raise the conductor temperature to the maximum permissible short-circuit temperature of the cable within 5 s. Between the two short-circuits, the test loop shall be allowed to cool to a temperature less than 10 K above its temperature prior to the first short-circuit.

4.6 Test circuit S01

G MB MS	= Generator = Master Breaker = Make Switch = Power Transformer	TO L	= Test Object = Reactor	I	= Voltage Measurement to earth = Current Measurement	
---------------	---	------	----------------------------	---	---	--

Supply		
Power	MVA	47,2
Frequency	Hz	50
Phase(s)	N I	3
Voltage	kV	2,2
Current	kA	22
Impedance	Ω	0,033
Power factor		< 0,1
Neutral		Not earthed

Load	
Short-circuit point	earthed

4.7 Test results and oscillograms

Test number: 150128-6005

uni t

Phase		•	•	
Peak value of current	kA	-42,6	38,7	38,1
Symmetrical current, beginning	kA	23,0	23,5	23,3
Symmetrical current, middle	kA	22,7	23,1	22,8
Symmetrical current, end	kA	22,5	22,9	22,7
Symmetrical current, average	kΑ	22,8	23,3	22,1
Average current, three phase	kA		22,7	
Current duration	s	1,05	1,05	1,05
Thermal equivalent		22,5 k	A during	1,06 s

Ambient temperature	13,5 °C	

Remarks:			
Tremains.			

Thermal short-circuit test

Thermal short-circuit test	60	006
U1TO 1. 25kV pu	-	~~
L2TO 1. 25kV pu————————————————————————————————————		
USTO 1. 25kV pu		
uni t		1.8

U1TO 1. 25kV pu

U2TO 1. 25kV pu

12TO 66. 7kA pu

U3TO 1. 25kV pu

13TO 66. 7kA pu

13TO 66. 7kA pu

150128-6006 Test number: Phase 37,9 -42,3 38,6 kA Peak value of current 23,4 23,2 23,0 kA Symmetrical current, beginning 23,0 22,7 Symmetrical current, middle kA 22,6 kA 22,5 22,9 22,6 Symmetrical current, end kA 22,8 23,2 22,0 Symmetrical current, average 22,7 Average current, three phase kA s 1,05 1,05 1,05 Current duration 22,5 kA during 1,10 s Thermal equivalent

Ambient temperature	13,5	°C

Remarks:

4.8 Condition / inspection after test

Requirement

No visible deterioration may occur.

Result

No visible change. No visible damage. The object passed the test.

4.9 Impulse voltage at ambient temperature

Standard and date

Standard

IEC 60502-4, Table 5, test number 10

Test date

29 January 2015

.Environmental conditions

Ambient temperature

20 °C

Characteristic test data

Temperature of test object

20 °C

Specified test voltage

95 kV

Testing arrangement		Polarity			See figure on next pages	
Voltage applied to	Earthed	a mid Dayne	(% of test voltage)		KISH BEE	
Conductor 1	Metal screens	Positive	50	1	1 (waveshape)	
test loop 3	and conductor		65	1	2	
	2 and 3		80	1	2	
	al Sec		100	10	3 and 4	
Conductor 1	or 1 Metal screens Negative		50	1	5 (waveshape)	
test loop 3	and conductor		65	1	6	
toot loop o	2 and 3		80	1	6	
			100	10	7 and 8	
Conductor 2 test loop 3	Metal screens and conductor 1 and 3	Positive	50	1	9 (waveshape)	
			65	1	10	
			80	1	10	
			100	10	11 and 12	
Conductor 2	Metal screens	Negative	50	1	13 (waveshape)	
test loop 3	and conductor		65	1	14	
test loop 5			80	1	14	
			100	10	15 and 16	
Conductor 3	Metal screens	Positive	50	1	17(waveshape)	
test loop 3	and conductor		65	1	18	
test loop o	1 and 2		80	1	18	
			100	10	19 and 20	
Conductor 3	Metal screens	Negative	50	1	21 (waveshape)	
test loop 3	and conductor		65	1	22	
tost loop o	1 and 2		80	1	22	
	The second second	1,00	100	10	23 and 24	

Note

On request of the client the applied LI voltage was 95 kV instead of 75 kV.

1088-15 -53-

Requirement

Each core of the cable and accessory shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

-60-

4.10 AC voltage dry

Standard and date

Standard

IEC 60502-4, Table 5, test number 11

Test date

29 January 2015

Environmental conditions

Ambient temperature Temperature of test object 20 °C

20 °C

Testing arrangement		Voltage applied, 50 Hz		Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 3	Metal screens	2,5	16	15

Requirement

No breakdown or flashover shall occur.

Result

-61- 1088-15

4.11 Examination

Standard and date

Standard

IS 13573 (part 2), table 2, test xiv)

Test date

5 February 2015

Environmental conditions

Ambient temperature

20 °C

Temperature of test object

20 °C

Test loop	Observations ¹⁾	
3	None of the following has been detected:	
	- cracking in the filling media and/or tape or tube components	
	- a moisture path across a primary seal	
	- corrosion and/or tracking and/or erosion	
	- leakage of any insulating material	

Result

The results are for information only.

-64-

5 TEST SEQUENCE 1.5 (ONE OUTDOOR TERMINATION)

5.1 Salt fog

Standard and date

Standard IEC 60502-4, Table 5, test number 13

Test dates . 11 February to 23 March 2015

Environmental conditions

Ambient temperature 20-22 °C Temperature of test object 20-22 °C

Characteristic test data

Leakage current protection 1 ± 0,1 A

 (I_{max})

Conductivity 1600 \pm 200 mS/m Rate of flow 0,4 \pm 1 l/h/m³

Testing arrangement		Applied Voltage, 50 Hz		Duration	
Voltage applied to conductor	Earth connected to	x U ₀	(kV)	(h)	
1, 2 and 3	Metallic screen	1,25	8	1000	

Requirement

No breakdown or flashover, no more than 3 trips, no substantial damage of the insulation shall occur.

Result

There was no breakdown or flashover, no trips.

After the salt fog test, loss of dielectric quality due to tracking and/or erosion was found on one of the three phases.

5.2 Examination

Standard and date

Standard

IS 13573 (part 2), table 2, test xiv)

Test date

23 March 2015

Environmental conditions

Ambient temperature

20 °C

Characteristic test data

Temperature of test object

20 °C

Object	Observations
Test loop 4	None of the following has been detected:
	 cracking in the filling media and/or tape or tube components a moisture path across a primary seal corrosion and/or tracking and/or erosion leakage of any insulating material

-68-

Result

For information only.

6 DRAWING

7 MEASUREMENT UNCERTAINTY

The measurement uncertainties in the results presented are as specified below unless otherwise indicated.

Measurement	Measurement uncertainty
Dielectric tests and impulse current tests:	
peak value	≤ 3%
time parameters	≤ 10%
Capacitance measurement	0,3%
Tan δ measurement	$\pm 0,5\% \pm 5 \times 10^{-5}$
Partial discharge measurement:	
- < 10 pC	2 pC
- 10 to 100 pC	5 pC
- > 100 pC	20%
Measurement of impedance AC-resistance measurement	≤ 1%
Measurement of losses	≤ 1%
Measurement of insulation resistance	≤ 10%
Measurement of DC resistance:	
– 1 to 5 μΩ	1%
- 5 to 10 μΩ	0,5%
- 10 to 200 μΩ	0,2%
Radio interference test	2 dB
Calibration of current transformers	2,2 x 10 ⁻⁴ l _i /l _u and 290 µrad
Calibration of voltage transformers	1,6 x 10 ⁻⁴ U/U _u and 510 µrad
Measurement of conductivity	5%
Measurement of temperature:	
50 to -40 °C	3 K
40 to125 °C	2 K
- 125 to 150 °C	3 K
Tensile test	1%
Sound level measurement	type 1 meter as per IEC 60651 and ANSI S1,4,1971
Measurement of voltage ratio	0,1%